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Abstract. A new supersymmetric approach to dynamical symmetries for matrix quantum
systems is explored. In contrast to standard one-dimensional quantum mechanics where there is
no role for an additional symmetry due to nondegeneracy, matrix Hamiltonians allow nontrivial
residual symmetries. This approach is based on a generalization of the intertwining relations
familiar in SUSY quantum mechanics. The corresponding matrix supercharges, of first or of
second order in derivatives, lead to an algebra which incorporates an additional block diagonal
differential matrix operator (referred to as a ‘hidden’ symmetry operator) found to commute with
the super-Hamiltonian. We discuss some physical interpretations of such dynamical systems in
terms of spin1

2 particle in a magnetic field or in terms of coupled channel problem. Particular
attention is paid to the case of transparent matrix potentials.

1. Introduction

Supersymmetric quantum mechanics (SUSY QM) [1] is an interesting framework for
analysing nonrelativistic quantum problems. In particular it allows us to investigate the
spectral properties of certain quantum models as well as to generate new systems with
given spectral characteristics.

In general it is well known that SUSY algebra provides the relation between
(super)partner Hamiltonians (which are often referred to as ‘bosonic’ and ‘fermionic’)
associated to a two-fold degeneracy of levels.

Much less attention has been paid in literature to the possibility of using SUSY as a tool
to study individual (‘internal’) symmetries of each superpartner Hamiltonian. In principle
this can be useful if it allows us to integrate partially dynamical systems by discovering an
additional dynamical symmetry which we shall refer to as a ‘hidden’ symmetry. Although
we are unable to provide a straightforward procedure to reveal hidden symmetries of a given
system in general, we will show that it is indeed possible to construct classes of examples
of hidden symmetries by SUSY-inspired approaches∗.
§ E-mail address: andrianov1@phim.niif.spb.su
‖ E-mail address: cannata@bo.infn.it
¶ E-mail address: ioffe@phim.niif.spb.su
+ On leave of absence from Kutaisi Polytechnic University, Georgia, USA.∗ Notice that the existence of a symmetry operator is not necessarily associated with degeneracy of eigenstates of
the Hamiltonian. One can convince oneself of this fact for matrix QM by taking 2× 2 diagonal Hamiltonian with
components having different spectra and no degeneracy. In this case a symmetry operator is obviouslyσ3 playing
the role of a grading operator.
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The standard SUSY QM relations read

{Q+,Q−} = H =
(
h(1) 0
0 h(2)

)
=
(
q+q− 0

0 q−q+

)
(1)

h(i) ≡ −∂2+ V (i)(x) q± = ∓∂ +W(x) ∂ ≡ ∂/∂x

Q− =
(

0 0
q− 0

)
Q+ =

(
0 q+

0 0

)
(2)

{Q±,Q±} = 0 (3)

[Q±, H ] = 0 h(1)q+ = q+h(2). (4)

In general there are different realizations of this algebra, for example multidimensional
[2] and matrix [3] ones. It is also possible to generalize the algebra itself by preserving
equations (3), (4) and allowing, by a nonstandard form of the intertwining operatorsq±, to
modify (1) to become

{Q+,Q−} = K =
(
k(1) 0
0 k(2)

)
=
(
q+q− 0

0 q−q+

)
(5)

where the diagonal operatorK is no longer the super-Hamiltonian but has in general the
nature of a symmetry operator

[k(i), h(i)] = 0. (6)

This generalization has already been discussed for one-dimensional [4] and two-
dimensional [5] QM. For one-dimensional systems and intertwining operators of second
order in derivatives the only relevant case was the one for whichK is a function ofH,

K = H 2− 2αH + β
whereα andβ are constants. For the two-dimensional case there exists the possibility of
having a central chargeR, which commutes with all elements of algebra, such that

K = f (H)+ R. (7)

A new, supersymmetrical, method was elaborated [4–5] to investigate hidden dynamical
symmetries of quantum systems. The existence of such a differential operatorR implies a
dynamical symmetry (unknowna priori ) made apparent by the generalized SUSY algebra.

Let us recall the physical impact of the supersymmetric approach to the Dirac equation
[6] with some applications to superconductivity [7], to pseudorelativistic behaviour of
electrons in two-band systems [8] and to attempts to a diagonalization procedure [3] in
nuclear and atomic physics coupled channel problems and finally in the treatment of particles
with spin in external magnetic fields [9]. Therefore it is important to discuss the role of
symmetry operators for one-dimensional dynamical systems of Schrödinger type with matrix
potentials. Formally the most straightforward method is to study the commutator of the
Hamiltonian matrix with a generic differential operator matrixR and solve the corresponding
system of differential equations obtained by imposing the commutator to vanish [h,R] = 0.
Incidentally one can easily check that for the scalar case this system of equations (after
possible subtraction of the Hamiltonian) does not allow a nontrivial solution. In contrast,
in the matrix case nontrivial solutions exist even for the case of symmetry operators of first
order in derivatives. For higher-order derivatives the equations become rather cumbersome
and it is too difficult to provide the general discussion of the solutions.

For this higher-order case a method of solution suggested by supersymmetry seems to
be useful. It starts from the same idea of factorization originally proposed by Schrödinger
[10] with the related intertwining operators (see (4)) but now it is not applied to the
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Hamiltonian but rather to the symmetry operator: this method reduces the order of
differential equations one must solve without, however, increasing their number. In this
paper we shall find nontrivial genuine second-order operatorsR even for one-dimensional
first-order intertwining matrix operators.

The paper is organized as follows. In section 2 we shall investigate the SUSY approach
with intertwining operators of first order in derivatives. A variety of matrix systems
allowing genuine second-order symmetry operators will be obtained. In section 3 this
method will be applied to a more complex case of higher-order intertwining operators,
examining in particular the conditions for the factorizability of these intertwining operators
(reducibility). The type of physical systems which we can describe in our formalism include
a particle with magnetic moment in a magnetic field and more generally a class of systems
with one continuous and one discrete degrees of freedom. A novel construction is given
for transparent matrix potentials which are not duplications of standard scalar transparent
potentials and are not generated by iterations of first-order Darboux transformations.

2. First-order matrix SUSY QM

We start from the general first-order (in derivatives) representation of the components of
supercharges in the case of one-dimensional QM

q+ ≡ A∂ + B̃ q− ≡ −A†∂ + B̃† (8)

whereA andB̃ are matrices. Imposing that these operators intertwine the Hamiltoniansh(1)

andh(2) (see equation (4)) reads

(−∂2+ V (1)(x))(A∂ + B̃) = (A∂ + B̃)(−∂2+ V (2)(x)) (9)

where V (1), V (2) are Hermitian potential matrices. Equation (9) amounts to solve the
following three equations:

A′ = 0 (10)

V (1)A− AV (2) = 2B̃ ′ (11)

−B̃ ′′ + V (1)B̃ − B̃V (2) − AV (2)′ = 0. (12)

The first equation implies that hereafter we will assumeA to be a constant matrix. As
usual in the frameworks of SUSY QM, the intertwining relations equation (9) lead to the
connection between the column eigenfunctions of Hamiltoniansh(1) andh(2) :

9(1)(x) = (A∂ + B̃)9(2)(x) 9(2)(x) = (A∂ + B̃)†9(1)(x). (13)

Equation (13) sometimes allows zero modes, and the spectra of the partner Hamiltonian
coincides up to these zero modes. What is not standard is the fact that equation (1) does
not hold because the products of the supercharge components are no longer equal to the
Hamiltonians:

q+q− = k(1) = −AA†∂2+ (AB̃† − B̃A†)∂ + B̃B̃† + AB̃†′ (14)

q−q+ = k(2) = −A†A∂2+ (B̃†A− A†B̃)∂ + B̃†B̃ − A†B̃ ′. (15)

It is natural to consider detA 6= 0 and detA = 0 separately because the way to solve
the system of equations (10)–(12) differs for the two cases. In the case detA 6= 0 it
is possible to subtract the Hamiltoniansh(1) and h(2) from k(1) and k(2), being left with
a symmetry operators of first order in derivatives; otherwise we deal with second-order
operators. Furthermore, by a suitable similarity transformation induced by the matrixA
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itself it is possible to considerA = −1 as a representative of the case detA 6= 0 whereas

we can take the matrixA =
(
a b

0 0

)
as a representative of detA = 0.

2.1. The caseA = −1, symmetry operators of first order

In this case equations (11) and (12) become

V (2) − V (1) = 2B̃ ′ (16)

−B̃ ′′ + V (1)B̃ − B̃V (2) + V (2)′ = 0. (17)

One can parametrize the potential matrices taking into account (16):

V (1) = B̃2− B̃ ′ +W V (2) = B̃2+ B̃ ′ +W. (18)

Then equation (17) becomes simply

W ′(x) = [B̃(x),W(x)]. (19)

The reader familiar with ordered products, for example in gauge field theory, will not have
difficulty recognizing that equation (19) has not a simple local solution unless

[B̃(x), B̃(y)] = 0.

Since effectively this last condition reduces the matrix problem to a scalar problem we do
not find this case of any interest to us.

From (16) one deduces that the non-Hermitian part ofB̃ does not depend onx because
of the hermiticity of the potentials. Therefore we can parametrizeB̃(x) = B(x)+ iC, where
B andC are both Hermitian matrices andC is a constant matrix. Correspondingly one has
to solve the system of matrix equations

W ′ = [B,W ] + i[C,W ] (20)

W −W † = −2i{B,C} (21)

which are the consequence of (17) and of the hermiticity of both potentials. Restricting
oneself to 2× 2 matrix potentials, one can study the system of equations (20) and (21) by
expanding all matrices in Pauli matrices and unity:

B = b0+ biσi C = c0+ ciσi W = w0+ wiσi (22)

with componentsb0, bi andc0, ci real. The related symmetry operators read:

R(1) = q+q− − h(1) = 2iC∂ + 2C2− 2iBC −W (23)

R(2) = q−q+ − h(2) = 2iC∂ + 2C2− 2iCB +W. (24)

While it is not restrictive to setc1 = c2 = 0, it is not interesting to choosec3 and c0

both to vanish. Indeed in this case the symmetry operators above are no longer differential
operators and become proportional to a constant matrixW.

A general solution of the nonlinear system of matrix equations (20), (21) amounts first
to finding a solution of the subsystem:

Imw0 = −2(b0c0+ b3c3)

Imw1 = −2b1c0

Imw2 = −2b2c0

Imw3 = −2(b3c0+ b0c3)

w0 = constant

Rew3 = constant
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however, a complete solution of (20), (21) cannot be written. Particular solutions of (20)
and (21) in terms of components (22) can be obtained by making specific ansatze.

(1) Let us assume

c0 = b3 = Rew3 = 0 Imw3(x) ≡ 0 c3 6= 0

b3 6= 0 would correspond to a trivial solutionW(x) = constant. Then one obtains

b0 = 0 Rew1 = β cos(2c3x)

Rew2 = −β sin(2c3x) b2(x) = −b1(x) tan(2c3x)

where β is a constant parameter andb1(x) ≡ b̃1(x) cos(2c3x) with b̃1(x) an arbitrary
nonsingular function. Correspondingly the potentials read

V (1),(2)(x) = b̃2
1(x)− c2

3 + Rew0+ [β cos(2c3x)∓ b̃′1(x) cos(2c3x)± 2c3b̃1 sin(2c3x)] · σ1

−[β sin(2c3x)∓ b̃′1(x) sin(2c3x)∓ 2c3b̃1(x) cos(2c3x)] · σ2 (25)

and the symmetry operators (23), (24) after subtraction of constants become:

R(1),(2) = iσ3∂ ∓
[
b̃1(x) sin(2c3x)+ β

2c3
cos(2c3x)

]
· σ1

∓
[
b̃1(x) cos(2c3x)− β

2c3
sin(2c3x)

]
· σ2. (26)

Among the different interpretations concerning the physics of the matrix potentials
V (1),(2) one consists of a spin12 neutral particle in a (inhomogeneous) magnetic field. It is
necessary to assume that the magnetic field depends only on the coordinatex ≡ x3 and lies
in the (x1, x2)-plane in order to ensure the vanishing of its divergence∂iBi = 0. While the
motion in the(x1, x2)-plane is trivially free, the dynamics is still rather interesting because
of the x3 motion [9]. Physics-wise the inhomogeneity of the magnetic field is determined
in this case by the requirement of vanishing of the scalar potential in (25) (neutrality of the
particle).

(2) Let us assume

c0 = b3 = Rew3 = 0 Imw3(x) 6= 0 c3 6= 0

as beforeb3 6= 0 would correspond to a trivial solutionW(x) = constant. Then one obtains

b0(x) = − 1

2c3
Imw3(x) b1(x) = (Rew2)

′ + 2c3 Rew1

2 Imw3

b2(x) = −(Rew1)
′ + 2c3 Rew2

2 Imw3

where

Rew1(x) =
√
(Imw3)2+ β cosf (x) =

√
(2b0c3)2+ β cosf (x)

Rew2(x) =
√
(Imw3)2+ β sinf (x) =

√
(2b0c3)2+ β sinf (x).

β is a constant parameter as well asc3 andf (x) and Imw3(x) are arbitrary functions. The
potentials and the symmetry operators read:

V (1),(2)(x) = b2
0 ∓ b′0+ b2

1 + b2
2 − c2

3 + Rew0+ [2b0b1+ Rew1∓ b′1] · σ1

+[2b0b2+ Rew2∓ b′2] · σ2 (27)

R(1),(2) = iσ3∂ ±
[
b2(x)− Rew1

2c3

]
· σ1±

[
−b1(x)− Rew2

2c3

]
· σ2. (28)
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In terms of the ‘magnetic’ interpretation given above one can now notice that the absence
of the scalar potential in (27) is less restrictive because the magnetic field still depends
on one arbitrary function. The intrinsic ‘periodicity’ of the magnetic field forces a similar
periodicity of the wavefunction. We warn, however, not to interpret the periodicity too
naively since it depends in general on the properties of the arbitrary functionf (x), for
example asymptotically constant magnetic field can be incorporated in this scheme.

One can also find solutions for other ansatze such as, for example

c0 = 0 c3 6= 0 Rew3 = constant6= 0

similarly to (1) and (2).

2.2. The casedetA = 0, the symmetry operators of second order

The constant (see (10)) matrixA now has the form

A =
(
a b

0 0

)
. (29)

We write the matricesV (1),(2) andB explicitly and for simplicity we assume them to be
real:

V (i) =
(
v
(i)

1 v(i)

v(i) v
(i)

2

)
(30)

B(x) =
(
b1 b2

b3 b4

)
. (31)

Equations (11) and (12) can be solved and the potentials can be written in a similar way
as before in terms of Pauli matrices, however the reality condition forces the absence of a
σ2 term †. The hidden symmetry operators are now of second order in derivatives.

In the caseb 6= 0 it is possible to find several solutions dependent on arbitrary functions;
in the caseb = 0, a = 1 the form of the solutions simplifies. One solution is given by:

v
(1)
1 (x) = b′1+ b2

2 + c2b−2
2 + c1 v(1)(x) = −2cb′2b

−2
2

v
(1)
2 (x) = −

(
b′2
b2

)′
+
(
b′2
b2

)2

+ 2b′2b1

b2
+ b2

1 + b2
2 +

c2

b2
2

− b′1+ c̃1

v
(2)
1 (x) = −b′1+ b2

2 +
c2

b2
2

+ c1 v(2)(x) = −2b′2

v
(2)
2 (x) = b′′2

b2
+ 2b′2b1

b2
+ b2

1 + b2
2 +

c2

b2
2

− b′1+ c̃1

(32)

whereb1(x), b2(x) are arbitrary functions,b3(x) = cb−1
2 (x) and b4 = 0. The symmetry

operatorsR(1),(2) can be straightforwardly derived according to (14), (15) and are second-
order differential operators.

For the second solutionv(1),(2)1 (x) andv(1),(2)(x) are the same as in (32) and

v
(1)
2 (x) = b′′3

b3
− 2b′3b1

b3
− 2b′2b4

b3
− b′1+

4∑
k=1

b2
k + c̃1

v
(2)
2 (x) = b′′2

b2
+ 2b′2b1

b2
+ 2b′3b4

b2
+ b′1+

4∑
k=1

b2
k + c̃1

† The interpretation of the dynamics as a magnetic interaction ofs = 1
2 particle is now still possible but we can

also consider it as a coupled channel problem as discussed in [3].
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whereb2(x), b3(x) are arbitrary functions such thatb2b3 6= 0, b4 = constant6= 0 and

b1(x) = (b2b3)
−1

[
(b2b3)

2

2b4
− (2b4)

−1(b2
2 + b2

3)+ α
]

with α a constant parameter.

3. Second-order matrix SUSY QM

Let us define the second-order differential operators

q+ = (q−)† = ∂2− 2F(x)∂ + B(x) (33)

q− = (q+)† = ∂2+ 2F †(x)∂ + B†(x)+ 2F ′†(x) (34)

whereF(x) andB(x) are 2× 2 matrices. This representation forq± can be inserted into
(2)–(5).

The intertwining relations are equivalent to a system of three nonlinear matrix differential
equations:

V (1) − V (2) + 4F ′ = 0 (35)

F ′′ − V (1)F + FV (2) − B ′ − V (2)′ = 0 (36)

B ′′ + V (2)′′ − V (1)B + BV (2) − 2FV (2)′ = 0. (37)

Our attitude towards the solution of this system of equations is that we considerq±, h(2), h(1)

to be essentially unknown except for the Schrödinger form of Hamiltonians and assumption
of structure (33) of the supercharges, so the problem is to find the solution in terms of the
matricesF(x), B(x), V (i)(x).

Due to the complexity of the problem (matrix, second derivatives, nonlinearity) it does
not seem realistic to search for a general solution in analytic form, instead we believe that
techniques of higher-order SUSY QM as developed in [4] can provide a useful tool for
solving in an ‘indirect’ way by the ansatz of factorizability ofq±, i.e. restricting to the
reduciblematrix higher-order SUSY QM.

Another possibility which we mention is a particular solution for which the terms
FV (2) − V (1)F appearing in equation (36) reduce to{F,F ′} with the aim of a ‘direct’
integration of this equation. A sufficient condition which allows this integration is

V (1) + V (2) = 2P(F)

whereP is an arbitrary ‘scalar’ function of the matrixF(x) such as for exampleP =
6cn(x)F

n(x) wherecn are scalar functions.

3.1. Reducible higher-order matrix SUSY QM

A specific ansatz consists of the factorizability of the operatorsq± of (33), (34) in terms of
ordinary superpotentialsW(x) andW̃ (x):

q+ = q+1 q+2 = (−∂ +W(x))(−∂ + W̃ (x)) (38)

connected by the ladder equation

q−1 q
+
1 = q+2 q−2 + 1̂ or W ′ +W 2 = −W̃ ′ + W̃ 2+ 1̂ (39)
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with 1̂ being a constant Hermitian matrix as will be clear later on. Let us assume
furthermore1̂ to be diagonal†. ThenF andB of equations (33) and (34) are determined
by the superpotentialsW(x), W̃ (x):

2F = W + W̃ B = WW̃ − W̃ ′. (40)

The factorization equation (38) arises from two successive standard SUSY QM
transformations(

h(1) 0
0 h

)
=
(
q+1 q

−
1 0

0 q−1 q
+
1

)
(41)

and (
h 0
0 h(2) + 1̂

)
=
(
q+2 q

−
2 + 1̂ 0
0 q−2 q

+
2 + 1̂

)
(42)

by deleting the ‘intermediate’ Hamiltonian:

H =
(
q+1 q

−
1 0

0 q−2 q
+
2 + 1̂

)
. (43)

The matrix1̂ has to be such that [H,Q±] = 0 and consequently [q±2 , 1̂] = 0 which
makes the reason clear whŷ1 has to be constant and that [W̃ , 1̂] = 0. We can therefore
conclude that [h(2) + 1̂, 1̂] = 0 and this allows us to identifyR(2) ≡ 1̂ as asymmetry
operator for h(2). If it further commutes withh(1) this operator is such that

{Q+,Q−} = (H)2− 0̂ ·H (44)

where0 is a block diagonal matrix

0 ≡
(
1̂ 0
0 1̂

)
(45)

and thus it corresponds to a rather ‘trivial’R operator. Hereafter we shall exclude such a
case imposing that the operator

R(1) = −q+1 1̂q−1 (46)

is nontrivial ‡. The last case is rather interesting because it incorporates the possibility of
having genuine partner symmetry operators of different orders in the derivatives.

In order to derive a solution we expand the previous operators in terms of Pauli matrices:

W(x) = w0+ wiσi W̃ (x) = w̃0+ w̃3σ3 1̂ = δ0+ δ3σ3 δ3 6= 0. (47)

To illustrate the techniques involved we now give an example.

Example 1.

δ0 = 0 w0(x) = w̃0(x) w2(x) = 0.

Equation (39) then takes the form

2w0w3+ w′3− 2w0w̃3+ w̃′3− δ3 = 0

2w0w1+ w′1 = 0

w2
3 + w2

1 + 2w′0− w̃2
3 = 0

(48)

with the following solution

w0 = w̃0 = 1/(2x) w1 = 1/x w3 = w̃3 = δ3x/2. (49)

† If it is not, it can be diagonalized by a constant unitary transformation which also affects other operators.
‡ Equation (46) first appeared in the concluding section of [2].
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In order to arrive at an interpretation of these results we have to write the potentials:

V (1)(x) = W 2−W ′ = 7/4x2+ δ2
3x

2/4+ (2/x2) · σ1 (50)

V (2)(x) = W 2+W ′ + 1̂ = −1/(4x2)+ δ2
3x

2/4+ 2δ3 · σ3. (51)

These potentials contain centrifugal-like singularities and therefore we restrict the eigenvalue
problem (radial problem) on the semiaxisx > 0. The physical solutions regular at the origin
(ai, bi are constants)L2-normalizable behave as:

9(1)(x) ∼
x→0

(
a1x

5/2+ a2x
1/2

a1x
5/2− a2x

1/2

)
9(2)(x) ∼

x→0

(
b1x

1/2

b2x
1/2

)
. (52)

Both potentials forδ3 6= 0 lead to a discrete spectrum.
The symmetry operatorR(1) can be calculated from equation (46) and is found to also

containσ2-type terms:

R(1) = σ3∂
2+ (2i/x)σ2∂ + {−δ3 · σ1− (i/x2) · σ2+ [1/(4x2)− δ2

3x
2/4] · σ3}. (53)

This operator also contains centrifugal singularities but one can easily prove that it maps
L2-normalizable solutions (52) into regular and normalizable solutions. Therefore it is a
true symmetry operator. The partner symmetry operatorR(2) = δ3σ3 is regular.

As in section 2.1 this example also allows an interpretation in terms of the external
field as a magnetic field. It is possible to consider a magnetic field as a (pseudo)vector in
a plane orthogonal to the one-dimensional axis in which the particle is allowed to move
x ≡ x2†. In contrast to section 2.1, the magnetic field inV (2) is homogeneous along the
x3-axis, while inV (1) it is not homogeneous (depends onx2) and has nonzero components
in the (x1, x3) plane.

To describe other examples it is useful to introduce

W(x)+ W̃ (x) ≡ 2F(x) = 2f0+ 2fiσi 2f1 = w1 2f2 = w2

then (39) becomes:

2F ′ − 4F 2+ 2{F,W } = 1̂. (54)

The problem is now expressed in terms of amatrix nonlinear differentialequation (54) for
F, W . Since we are unable to present a general (analytic) discussion we provide particular
solutions of the system (54) which in terms of components can be rewritten:

2f ′0 − 4(f0)
2+ 4(f1)

2+ 4(f2)
2− 4(f3)

2+ 4f0w0+ 4f3w3 = δ0 (55)

f ′1 + 2w0f1 = 0 (56)

f ′2 + 2w0f2 = 0 (57)

2f ′3 − 8f0f3+ 4f0w3+ 4w0f3 = δ3. (58)

The solutions presented in the following will allow us to construct explicitly the partner
potentials and the symmetry operators by using the general expressions in terms of only the
fk, (k = 0, 1, 2, 3) andw0, w3:

V (1)(x) = w2
0 + w2

3 − w′0+ 4(f 2
1 + f 2

2 )− 4f ′1 · σ1− 4f ′2 · σ2+ (2w0w3− w′3) · σ3

V (2)(x) = w2
0 + w2

3 − w′0+ 4(f 2
1 + f 2

2 + f ′0)− δ0

+[2w0w3− w′3+ 8(2f0f3− f0w3− f3w0)+ δ3] · σ3.

† This choice will allow us to implement the condition of absence of sources of magnetic field automatically,
∂iBi = 0.
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It is advantageous to not use expression (46) directly but to define a symmetry operator by
suitable subtraction and rescaling (see section 1):

R̃(1) ≡ −R
(1) + δ0h

(1)

δ3
= −σ3∂

2+ 4i(f2σ1− f1σ2)∂

+(2w0w3− w′3)+ 4(w3f1− iw0f2) · σ1+ 4(w3f2+ iw0f1) · σ2

+(w2
0 + w2

3 − 4f 2
1 − 4f 2

2 − w′0) · σ3

and we remind thatR(2) ≡ 1̂.
We now list two particular cases

Example 2.

f0 ≡ 0 f3 6≡ 0.

The solution is of the type

2f1(x) = γ1 exp

(
− 2

∫
w0dx

)
2f2(x) = γ2 exp

(
− 2

∫
w0dx

)
2f3(x) = exp

(
− 2

∫
w0dx

)[
γ3+ δ3 exp

(
+ 2

∫
w0dx

)]
w3(x) = (4f3)

−1

[
δ0− (γ 2

1 + γ 2
2 ) exp

(
+ 4

∫
w0dx

)
+ 4f 2

3

]
.

Example 3.

f3 ≡ 0 f0 6≡ 0 δ0 = 0.

The solution of the equations (55)–(58) can be written as

2f1(x) = γ1 exp

(
− 2

∫
w0dx

)
2f2(x) = γ2 exp

(
− 2

∫
w0dx

)
w3(x) = δ3/(4f0)

f0(x) = 1
2

√
γ 2

1 + γ 2
2 exp

(
− 2

∫
w0dx

)
tanh

(
−
√
γ 2

1 + γ 2
2

∫
exp

(
− 2

∫
w0dx

)
+ C

)
.

3.2. Transparent matrix potentials

We now explore a physical case for which the HamiltonianH(2) describes free motion; in
equations (35)–(37) we assumeV (2) = 0 and, as a consequence of SUSY,V (1) becomes a
so-called transparent matrix potential [4, 3]:

V (1) + 4F ′ = 0 (59)

F ′′ − V (1)F − B ′ = 0 (60)

B ′′ − V (1)B = 0. (61)

These relations allow further simplifications by eliminatingV (1) andB in terms ofF
using equation (59) and differentiating equation (60) to obtainB ′′ which is then introduced
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in equation (61) leading to a linear algebraic equation forB†. Inserting the expression for
the derivative ofB back into equation (60) we obtain

F ′′ + 4F ′F + [(4F ′)−1(F ′′′ + 4F ′2+ 4F ′′F)]′ = 0 (62)

or equivalently

(F ′′ + 4F ′F)′ + 4F ′
∫
(F ′′ + 4F ′F) dx = 0 (63)

a nonlinear fourth-order equation forF whose solution may allow us to identify a class of
transparent potentials in a 2× 2 coupled channel problem.

A sufficient condition forF to satisfy equation (62) is given by thesimpler equation of
second order

(F ′′ + 4F ′F) = γF ′ (64)

with γ being an arbitrary constant number. It easy to verify the property that ifF(x) is a
solution of the nonlinear matrix equation (64) thenF̃ (x) ≡ F(x)+ α · I with α = constant
is again a solution of the same equation but for the shifted value ofγ̃ = γ + 4α. This
peculiar property therefore allows us to restrict to the caseγ = 0 in (64). The solution of
this equation, because of (59), can be searched for, by parametrizingF(x) ≡ G(x) + iC
with G(x) andC Hermitian andC a constant matrix. We have thus to solve

G′′(x)+ 4G′(x)G(x)+ 4iG′(x)C = 0. (65)

We can expandG andC in Pauli matrices, by a suitable rotation we can choosec1 = c2 = 0
and furthermore we assumec0 = 0. Then we arrive at a system of equations:

g′0+ 2g2
0 + 2Eg 2 = 2γ0

g′i + 4g0gi − 4εij3c3gj = 2γi i, j = 1, 2

εijkg
′
j gk + g′0c3δ3i = 0 i, j, k = 1, 2, 3

g3 = 2γ3

with constantγ ’s and obvious meaning ofg’s andc’s.
A solution can be found for allγµ = 0:

g0(x) = 1

4x + β
g1(x) = g0(x) cosφ(x)

g2(x) = g0(x) sinφ(x)

φ(x) ≡ −4c3x + ζ
with β andζ arbitrary real constants.

By shiftingx by β/4 andζ by c3β we obtain the following expression for the transparent
Hermitian matrix potentialV (1)(x) with a singularity at the origin and long-range behaviour:

V (1)(x) = 1

x2
+
[

1

x2
cosφ(x)− 4c3

x
sinφ(x)

]
· σ1+

[
1

x2
sinφ(x)+ 4c3

x
cosφ(x)

]
· σ2

= 1

x2
(1+ N̂(x))− 4ic3

x
σ3N̂(x) (66)

† Incidentally we note that equation (61) is a Schrödinger equation forB with eigenvalue zero. This is related to
the fact thatV (2) = 0 and therefore there exists a trivial zero-energy solution, namely the constant wavefunction.
Letting A+ act on this wavefunction one obtains the corresponding one forh(1) with the same zero energy as
proportional to the matrixB(x) acting on a constant vector.
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where

N̂(x) ≡ σn cos(4c3x)+ iσ3σn sin(4c3x)

σn ≡ σ1 cosζ + σ2 sinζ.

Due to the centrifugal singularity in this potential

V (1)(x) ∼
x→0

1

x2
(1+ σn)+O(1)

one should consider the scattering problem on the semiaxisx > 0.
To analyse the behaviour of wavefunctions at the origin it is useful to choose as a basis

the following matrices:σn, σ̃n ≡ (σ2 cosζ − σ1 sinζ ) andσ3 with nonstandard realization:

σn =
(

1 0
0 −1

)
σ̃n =

(
0 1
1 0

)
σ3 =

(
0 −i
i 0

)
.

Then potentialV (1)(x) becomes diagonal at the origin, but of course not in general, and its
wavefunctions forx → 0 are:

9(1)(x) ∼
x→0

(
ax2

bx

)
.

The dynamical symmetry operator forh(1) can be derived from

˜̃
R
(1)
≡ q+q− − (h(1))2 = −4iC∂3+ (−4G2− 4C2− 4i[C,G] − 2G′) · ∂2

−(8GG′ + 8iCG′ + 2G′′)∂ − (2G′′′ + 4GG′′ + 4iCG′′ + 16G′2).

This operator is also singular at the origin:

˜̃
R
(1)
∼
x→0
−4ic3σ3∂

3+
(

4c3

x
σ̃n − 4c2

3 + 16c2
3σn − 32c3

3xσ̃n

)
· ∂2

+
(

4ic3

x2
σ3− 4c3

x2
σ̃n − 32c3

3σ̃n

)
· ∂

+
(
−4ic3

x3
σ3+ 4c3

x3
σ̃n − 12c2

3

x2
− 12c2

3

x2
σn + 32c3

3

x
σ̃n + 92c4

3σn

)
.

Nevertheless it maps wavefunctions regular at the origin into regular ones similarly to
example 1 (section 3.1).

Proceeding in the same way forγ0 > 0, γk = 0 (k = 1, 2, 3) we find another solution:

g0(x) = ω coth(4ωx)

g1(x) = ω cosφ

sinh(4ωx)

g2(x) = ω sinφ

sinh(4ωx)

with φ(x) as before andω ≡ √γ0. In this case the corresponding potentialV (1)(x) has the
same centrifugal behaviour at the origin. The analogous analysis of wavefunctions and of
their transformations by symmetry operatorR(1) can be performed.

One can check thatF(x) does not factorize the space dependence from a constant
matrix. We also stress that in generalV (1)(x) cannot be made diagonal by global rotation
and therefore it is not to be viewed as a pair of standard scalar reflectionless potentials: this
means that there is flux from one channel to the other.
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In order to ascertain the reducible or irreducible character of the solutions of (64) it
is important to clarify the conditions for reducibility for the caseV (2) = 0 andV (1)(x) a
transparent potential. As a consequence of (39), (41), (42) these conditions read:

V (1) = W 2−W ′ = −4F ′ (67)

V (2) = W̃ 2+ W̃ ′ + 1̂ = 0 (68)

W 2+W ′ = W̃ 2− W̃ ′ + 1̂ (69)

W + W̃ = 2F (70)

B = WW̃ − W̃ ′ = 2WF + 2F ′ (71)

with solution

1̂ = −ξ2 W̃ = ξ W = 2F − ξ
providing, as a consequence, the condition [F,F ′] = 0, corresponding to the factorization
of x-dependence of the matrixF(x). It is easy to check that our potentialsV (1)(x) do not
satisfy these conditions and therefore are not reducible.

4. Conclusion

We have demonstrated that the SUSY approach allows us to relate as SUSY partners a
dynamical matrix system where the symmetry is manifest to another matrix system where
this symmetry is hidden in the sense that it is not otherwise easy to guess it (see, e.g.
section 3.1). Therefore one is connecting systems with more complex dynamics to systems
which are simpler or even solvable. For matrix QM this approach provides examples
of dynamical (matrix) systems and associated symmetry operators: it is useful since a
straightforward general investigation of symmetries of a dynamical systems is not an easy
task. In particular the connection between degeneracy of levels and the existence of
symmetry operators is not mandatory and needs further clarification which presumably
will depend on detailed dynamical properties of the system under investigation.

This line of research is not academic but in contrast should become a useful approach to
investigate nontrivial QM systems. We have restricted ourselves to one-dimensional matrix
QM: the algebraic methods we develop therefore seem to be specifically suited for this type
of dynamical systems for which spatial symmetries (such as O(3)) have already been used
to reduce the problem to a one-dimensional (radial) problem (separation of variables).

In the absence of general theorems we have studied first- and second-order intertwining
relations between matrix one-dimensional Hamiltonians discussing reducible and irreducible
transformations among them. The examples we have discussed can be interpreted as coupled
channel problems or Pauli-type Hamiltonians and our techniques may be instrumental to
their diagonalization. We have provided for the first time explicit examples of irreducible
transformations in the context of transparent matrix potentials in the framework of matrix
SUSY QM.
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